Tock OS | Thread Protocol Implementation
Status 8/31/2017

Hubert Teo, Paul Crews, Mateo Garcia

The original goal of our CURIS project this summer was to add low-power wireless networking
support to Tock OS. We implemented IPv6 packet transmission over an IEEE 802.15.4 radio
using the 6LOWPAN packet compression scheme. The end goal is for Tock to support the
Thread protocol developed by Nest Labs, which defines a mesh networking protocol that
operates over 802.15.4 and 6LoWPAN.

What follows is a documentation of the current state of the Thread protocol implementation in
Tock. We describe modules and tests that have been written, issues yet to be solved, and
functionality that is yet to be implemented.

Overview
Networking Layers
Cryptographic Primitives
Header Formats
Summary

Changes

IEEE 802.15.4
General Frame Format
Link-layer Security
Virtualization and Userspace Interface
Tests

6LoWPAN
Compression and Decompression
Fragmentation
Testing
Wireshark
Linux Kernel Module
On-Chip Code
Remaining Work
Testing
Features
Known Bugs

Thread
MLE
TLVs

© © 0 00 N NN O o0og b~ wow

- = A A A o =
N = 2 2~ a0 O o ©

—_ A -
w w W

Overview

Thread is a mesh networking protocol that builds on a very large set of pre-existing
technologies. These include networking layers, their corresponding userspace interfaces,
cryptographic schemes, and frame/packet formats for encapsulating data and metadata. Here is
an overview of the relationships between the subsystems required for full Thread support and a

rough gauge of their status of completion.

Networking Layers

Compliete

In progress

802.15.4 Radio

802.15.4 raw bytes

Userspace 802.15.4

B02.15.4 MAC

],_f—r

B02.15.4 plaintext frames

Userspace |PvE

Mesh Forwarding

IPv& packets

w

UDP Socket

UDF datagrams

Mesh Link Establishment

Userspace Thread

MLE messages

Mesh Commissioning

MashCoP

PHY . acknowledgements, CRC generation

and valdation, CEMA-CA backoll

Frame sacurity procadure, multiplexing,
vanous types of frames
(datatcommandbeacan)

GLoWPAN ancoding/decoding,
GLoWPAN fragmentation, muliplexing

Link establishrment, neighbor
managemant. child message buffering,
mesh routing

Indbaind commissioning, Thresd network
discoveryformation, partitioning

Cryptographic Primitives

802.15.4 Radio

802,15.4 raw bytes

L

r

802.15.4 MAC

802.15.4 plalmtext frames

]

f Mesh Forwarding

|| IPvE packels

L

r

UDP Socket

UDP datagrams

/ |

Complete

In progress

AES128-CTR,
AES128-CBC-MAC

Link-layes security

AES128-CCM*

MLE message security

| ‘I Mesh Link Establishment

MLE massages

N

Thread key management

HMAC-SHAZSS

Mesh Commissioning

MeshCoP

DTLE

EC-JPAKE

Header Formats

802.15.4 Radio Complala — is naadad for
BOZ2.15.4 raw bytes In progress s Encapsulsbes
802.15.4 MAC M| 802154 general frame
formal
A802.15.4 plaintext framas
/ : 1PwE
Mesh Forwarding e /
II 1 GLoWPAM encoding
| PvE packels X 8
| — uDe
UDP Socket an
LUDF dalagrams
| M - -
esh Link Establishment -
|| | ™= MLE message formats MLE TLVs
'|\\ MLE meseages
Mesh Eﬂ ITImISEIOHIng B MeshCoP - TMF o CoaP
MeshCoP

Summary

We have not been able to implement much of the Thread networking protocol itself, but our
work covers a large part of the significant engineering effort required to write a networking stack
from the ground up in Tock. Furthermore, our work paves the way for Thread in Tock by
providing a clear reference point and implementation roadmap.

As is clear from the above diagrams, each networking layer relies on having access to
implementations of two broad categories of subroutines: cryptography and header
encoding/decoding. We suspect that this need for sufficiently flexible and extensible
cryptography and header encoding/decoding functionality is not specific to Thread, but instead
to networking in general. Hence, it would be ideal to build general-purpose frameworks for these
two needs into Tock. We have already taken the first step of producing such a framework for
header encoding/decoding using macros, but it must be further tested against more header
formats before we can be sure it is sufficiently general. A similar framework is in the works for

cryptography.

Changes

IEEE 802.15.4 (#607)
capsules/src/rf233.rs: 802.15.4 radio, talks to RF233 over SPI
capsules/src/ieee802154/mac.rs: 802.15.4 MAC layer on top of a radio
capsules/src/ieee802154/driver.rs: Userspace driver for 802.15.4
capsules/src/ieee802154/virtual_mac.rs: MAC virtualization/mux
userland/libtock/ieee802154 {c|h}: 802.15.4 userspace interface
o userland/examples/tests/ieee802154/radio_{rx|tx|rxtx|ack}: Tests
6LoWPAN (#581)
o capsules/src/net/lowpan.rs: 6LoOWPAN compression/decompression
o capsules/src/net/lowpan_fragment.rs: 6LoWPAN fragmentation
o boards/imix/src/sixlowpan_dummy.rs: 6LoWPAN compression, decompression
and transmission test
o boards/imix/src/lowpan_frag_dummy.rs: 6LoWPAN fragmentation test
Thread (merged)
o capsules/src/net/thread/tlv.rs: MLE TLV support
Header encoding/decoding
o capsules/src/net/stream.rs: Generalized header encoding/decoding framework
with Rust macros
o capsules/src/net/ieee802154.rs: 802.15.4 header format support
o capsules/src/net/ip.rs: IPv6 header support (does not use the above framework)
o capsules/src/net/utils.rs: Utilities for IPv6 address prefix matching
Kernel changes
o kernel/src/commonl/list.rs: Some additional list manipulation methods
o kernel/src/common/take_cell.rs: and_then() for TakeCell/MapCell
Increasing ROM region to accommodate code size
o boards/imix/chip_layout.ld: Increase size of ROM region
o boards/imix/Makefile-app: Board-specific makefile to change app offset when
calling tockloader
o userland/tools/flash/imix.sh: Change app offset here too

o O O O

IEEE 802.15.4

Thread operates with the 6LoWPAN standard over IEEE 802.15.4 links. While Tock already had
a working implementation of an 802.15.4 radio (using the AT86RF233 radio transceiver chip), it
turned out to be rather incomplete upon closer inspection. Namely, its header parsing and
construction implementation (and hence, the frame-base interface it exposes) was insufficiently
general to support the needs of Thread. Additionally, the IEEE 802.15.4 security procedures for
incoming and outgoing frames were not at all supported. Link-layer security is mandatory in a
Thread network. Hence, we implemented a MAC layer abstraction on top of the existing code
that interfaces with the RF233 hardware, replacing the existing frame management code and
exposing a cleaner interface.

General Frame Format

IEEE 802.15.4 frames all fall under a unified general frame format. However, there are several
different types of frames (data, MAC command, beacon) that use different subsets of the
general frame format. Beacon and command frames also have additional structure in the
payload.

Our implementation of general frame format support is able to encode and decode byte buffers
containing 802.15.4 frames into a Rust struct with easily accessible fields. There is one
complication in this setup, which has to do with the frame format itself. 802.15.4 frames may
contain any number of Information Elements (IEs), and some IEs are considered as part of the
header and others as part of the payload. Together, they form a variable-length sequence of IEs
straddling the header-payload boundary. We store this sequence of IEs as entries in a fixed-size
array in the header struct, arbitrarily setting a limit on the maximum number of IEs in a header.

We choose to parse these IEs and include them in the header struct for convenience. However,
since the payload is encrypted in secured frames, this means that we cannot attempt to parse
payload |IEs from secured frames, and must instead re-parse them when frames are unsecured.
This logic is implemented as a flag into the frame header decoding process.

The resulting interface makes it easy to prepare and parse 802.15.4 data frames during
transmission and reception. While there is no support yet for MAC beacon and command
frames, the header parsing library can easily be extended to do so by just adding
encoding/decoding support for superframe specifications and command IDs.

Link-layer Security

Almost all parts of the IEEE 802.15.4 link-layer frame security procedures are implemented in
the MAC layer. The remaining parts are the device and key management that are to be
determined by an upper layer (Thread), and encryption. Device management is necessary
because that the frame security procedures rely on MAC extended addresses, which may not

always be contained in the frames. Instead, a “device” is identified by its MAC short address or
other frame metadata, and a mapping between “devices” and their extended MAC addresses
needs to be maintained. For now, a minimal device and key management mechanism is
implemented in the userland interface. For encryption, support can easily be added once there
is AES-CCM* support in Tock.

Virtualization and Userspace Interface

We wrote a sequencing multiplexer to virtualize the 802.15.4 interface (so that there can be both
a userspace interface for sending raw frames, and a mesh forwarder that sends IP packets over
the same interface). This multiplexer queues up transmission requests (one per client)
arbitrarily, but exposes all received frames to all clients, as if in promiscuous mode. This is so
that each client can implement its own filtering mechanism. In the future, we might need to
extend the queueing system to have a notion of priority, since certain Thread network
commissioning protocols take precedence over data transmission.

There is also a minimal userspace interface for sending raw 802.15.4 frames. It exposes a
list-based mechanism for configuring device and key management, and replicates some frame
inspection routines in userland so that Tock applications can work with 802.15.4 frames easily.

Tests

There are four sample Tock applications that test the combined functionality of the 802.15.4
MAC layer and radio: radio_tx, radio_rx, radio_rxtx and radio_ack. These respectively transmit,
receive, echo, and verify acknowledgements frames.

6LoWPAN

6LoWPAN is a popular format for transmitting IPv6 packets over 802.15.4 links. The primary
challenge of porting IPv6 to low power devices is the large minimum MTU required by the
protocol, which conflicts with the relatively small MTU of 802.15.4 links. Further, IPv6 packet
headers are large, and consume a substantial portion of the usable space in a 802.15.4 frame.
6LoWPAN solves these problems by using header compression and fragmentation, both of
which we implemented for Tock. The full 6LoWPAN protocol is specified in RFC 4944 and the
compression format is updated by RFC 6282. Our implementation uses the updated
compression format given by RFC 6282, and additionally implements the fragmentation
specification given in RFC 4944.

Compression and Decompression

In order to reduce the size of IPv6 headers, 6LOWPAN defines a fairly complex encoding and
compression scheme. Although initially defined in RFC 4944, the header compression scheme
was updated by RFC 6282, and the latter is used in the Thread protocol specification. For this
reason, we implemented the header compression and decompression scheme specified in RFC
6282. The code for this implementation can be found in the “tock/capsules/src/net/lowpan.rs’
file. Logically, the 6LoWPAN functionality is treated as a library instead of a well defined layer,
with the transmit and receive paths conditionally compressing or decompressing headers before
sending. This library primarily exposes the ‘compress’ and ‘decompress’ functions, but also
exposes utility functions and ways to manage the list of contexts needed for some address
compression schemes. The current 6LOWPAN compression/decompression routines are written
without the header encoding/decoding framework used for 802.15.4 frames and MLE TLVs.

At this point, support for RFC 6282 header compression has been implemented in Tock.
However, next header compression has not been extensively tested, and should be regarded as
not fully reliable.

Fragmentation

Although 6LoWPAN header compression makes it easier to send IPv6 packets over 802.15.4
links, often the full packet will not fit in a single frame. Thus, 6LoOWPAN defines a fragmentation
and reassembly process, operating at a layer below IP. The fragmentation layer is defined in
RFC 4944,

At this point, fragmentation has been implemented and tested for Tock. Although the required
functionality is there and has been tested, some bugs or unimplemented features remain. For a
full list of these issues, consult the Remaining Work section below.

Testing

We implemented and relied on several distinct testing strategies to confirm that the 6LoWPAN
implementation functioned correctly.

Wireshark

The most direct way used to test the 6LoWPAN implementation is by using the Tl CC2531
dongle with the tool found here: https://github.com/andrewdodd/ccsniffpiper. This piped all
packets from the Tl dongle to Wireshark, which is able to decode 6LoWPAN and 6LoWPAN
fragmentation packets. This served as a quick and efficient way to determine whether the
packets were being sent correctly. Note however, that Wireshark is unable to understand the
2015 802.15.4 frame format, and the 2006 format must be used instead.

Linux Kernel Module

Another means by which we tested the interoperability of our 6LoWPAN implementation was by
using the Linux kernel. A 6LoWPAN implementation exists inside the Linux kernel (4.10+), and
there exists a dummy loopback module (‘fakelb’, installed via ‘modprobe fakelb™) which allows
us to inject IEEE 802.15.4 frames into the kernel by creating two layer 2 802.15.4 interfaces
(wpan0, wpan1) that transmit packets between themselves. To inject the frames, we relied on a
Tl CC2531 sniffer, which gave us raw 802.15.4 frames that we could then send to the layer 2
IEEE 802.15.4 interface (wpan0Q). We can then create a layer 3 IPv6 interface (lowpan1) on top
of the other side of the loopback driver (wpan1), and receive the decompressed IPv6 packets.
This allows us to quickly verify against a reference implementation that our compression
scheme functions correctly. The full code for this can be found here:
https://github.com/ptcrews/pyCCSniffer.

Executing the following lines will initialize the required interfaces:

modprobe fakelb // Adds 802.15.4 interfaces wpan@, wpanl

iwpan dev wpan@ set pan_id [PAN ID]

iwpan dev wpanl set pan_id [PAN ID]

ip link add link wpan® name lowpan®@ type lowpan // Adds IPv6 interface lowpan®
ip link add link wpanl name lowpanl type lowpan // Adds IPv6 interface lowpanl
ip link set wpan® up

ip link set wpanl up

ip link set lowpan® up

ip link set lowpanl up

R R T N - L N L L

We can then ping via the link local address (found via “ip addr’) as follows:
$ ping6 [link local address]%[interface to send from]

Note that both the destination IP and MAC address must refer to the lowpan1 interface. This is
because the wpan0 and wpan1 interfaces do no processing on the packets they receive

https://github.com/ptcrews/pyCCSniffer
https://github.com/andrewdodd/ccsniffpiper

whatsoever, and so the lowpan1 interface receives the original single IEEE 802.15.4 frame
injected.

It appears that Linux kernel NHC and IPHC for 6LoWPAN may be different from how it is written
in Tock. This could explain why fragmented IPv6 packets are dropped by Linux.

It should be possible to test decompression by crafting an IPv6 packet, sending it via the layer 3
interface (lowpan1), reading out the data sent to the layer 2 interface (wpan0), then transmitting
it to the Imix for decompression. We did not implement this because we chose to wait until Tock
had userspace support for writing and receiving over USB.

On-Chip Code

Once minimal compression/decompression functionality was tested, we moved to on-chip
testing between Imix boards. We wrote two separate test files,
“boards/imix/src/sixlowpan_dummy.rs® and “boards/imix/src/lowpan_frag_dummy.rs* to test
6LoWPAN compression/decompression and 6LoWPAN fragmentation respectively. The first
test, ‘sixlowpan_dummy.rs’, constructs a number of different IPv6 packets, compresses them,
then decompresses them and checks that they are the same. If they are, then the compressed
version is sent. No additional testing on the receive side is required, but we can confirm
interoperability by sniffing via Wireshark. For the other test suite, ‘lowpan_frag_dummy.rs’, we
again craft a number of IPv6 packets deterministically, then call the fragmentation send function.
On the receive side, we craft the same IPv6 packet, then verify that the received/reassembled
packet matches. Note that this test suite requires two Imix boards, one running the transmit
version and the other running the receive version.

Remaining Work

There remains some additional testing to be done and features to be added. Most of the
remaining work relates either to testing or to additional features required for full correctness.

Testing

Although there currently exists code for next header compression and decompression, we have
not substantially tested this functionality. Furthermore, IPv6 encapsulation and UDP header
compression has not been tested at all, and compression/decompression relying on shared
context (context-dependent) has only been minimally tested. In order to correctly interoperate
with arbitrary devices, these untested features should be tested further.

Features

Specific to 6LoWPAN, there are a number of minor features that have not been fully
implemented. One of the most critical is ensuring that the fully compressed header fits within a
single IEEE 802.15.4 MTU. This is implied by the specification, but we do not check
conformance. Additionally, we need to correctly use the right address(es) for compressing and

decompressing encapsulated IPv6 headers. Finally, for compression performance, we should
also modify the compression code to use the better of context-dependent and context-free
address encoding schemes - currently, we always use link-local compression even if
context-dependent encoding gives better compression.

Known Bugs

There exists only one substantial, known bug in the current code. In running the
‘lowpan_frag_test.rs’ test suite, the middle fragment’s payload becomes corrupted in some of
the tests (between 2 and 3 tests out of 25). The end few bytes of the payload (anywhere
between 1 and 8 bytes) are overwritten with what appears to be radio information (signal
strength, etc.). Although the failing tests are somewhat deterministic, when changing which test
executes first, which tests fail also change. The bug does not appear to be in the 6LoWPAN or
MAC code, as the RF233 callback passes back the corrupted frame. Currently, we believe the
bug is in either the SPI code or the RF233 code. Note that although the bug seems to be some
kind of race condition, it happens on the same tests with almost identical bytes (given the same
starting conditions), and thus does not appear to be greatly influenced by execution order.

Thread
MLE

Our intended deliverable was the ability to connect a Sleepy End Device (SED), as defined in
Thread, to a Thread network. In Thread this is done using mesh link establishment (MLE). MLE
for network attaching is a four-step handshake that works as follows:
1. A child device, in our case an SED, multicasts a Parent Request.
2. Each potential parent device on the network, classified as a Router in Thread, unicasts a
Parent Response.
3. The child device selects a parent based on a hierarchy of connectivity metrics, and
unicasts a Child ID Request.
4. The selected parent unicasts a Child ID Response.

MLE messages consist of an MLE command type followed by a series of Type-Length-Value
(TLV) parameters.

TLVs

TLVs are used to serialize the configuration values exchanged during MLE, including link-layer
(Layer 2) addresses, transmit and receive modes, and security parameters. TLVs can be nested
within TLVs. The capsules/src/net/tlv.rs module, as it stands, supports the encoding and
decoding of the minimum subset of TLV types used in the MLE process for an SED.

